An improved high-speed residue-to-binary converter based on the Chinese Remainder Theorem
نویسندگان
چکیده
A new high-speed residue-to-binary converter for five bit moduli based on the Chinese Remainder Theorem is presented. The orthogonal projections are computed by mapping using five-variable logic functions. The sum of projections is calculated using the Wallace tree. The output carry-save representation is partitioned into four segments in such a way that the sum of the numbers represented by the low-order segments does not exceed the Residue Number System (RNS) range M. The bits of the high-order segments are compressed by the small carry-propagate adder that in effect diminishes the size of the modulo M generator used to reduce the number represented by the high-order segments. The obtained sum is smaller than 2M, thus the effective two-operand final modulo M adder can be used. The proposed converter can be pipelined on the full-adder level.
منابع مشابه
Efficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملLow Complexity Converter for the Moduli Set {2^n+1,2^n-1,2^n} in Two-Part Residue Number System
Residue Number System is a kind of numerical systems that uses the remainder of division in several different moduli. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers will increase the speed of the arithmetic operations in this system. However, the main factor that affects performance of system is hardware complexity of reverse converter. Reverse co...
متن کاملAdder based residue to binary number converters for (2n-1, 2n, 2n+1)
Based on an algorithm derived from the New Chinese Remainder Theorem I, we present three new residue-to-binary converters for the residue number system (2 1 2 2 + 1) designed using 2 -bit or -bit adders with improvements on speed, area, or dynamic range compared with various previous converters. The 2 -bit adder based converter is faster and requires about half the hardware required by previous...
متن کاملUsing the 2 Property to Implement an Efficient General Purpose Residue-to-Binary Converter
Even though it has been shown that residue number systems (RNS) provide very fast and reliable arithmetic due to its inherent parallel processing and error correction capabilities, its use is severely limited to a few applications due to the complexities involved in its conversion circuitry. Hence the design of efficient converters is still considered an important area of research in RNS based ...
متن کامل